Combustible Dust Testing

Laboratory testing to quantify dust explosion and reactivity hazards

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Gas and Vapor

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

UN-DOT
Classification of hazardous materials subject to shipping and storage regulations
Hydrogen
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature

Adiabatic Calorimetry
Data demonstrate the consequences of process upsets, such as failed equipment or improper procedures, and guide mitigation strategies including Emergency Relief System (ERS) design
Reaction Calorimetry
Data yield heat and gas removal requirements to control the desired process chemistry
Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Cable Testing
Evaluate electrical cables to demonstrate reliability and identify defects or degradation
Equipment Qualification (EQ)
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Water Hammer
Analysis and testing to identify and prevent unwanted hydraulic pressure transients in process piping
Acoustic Vibration
Identify and eliminate potential sources of unwanted vibration in piping and structural systems
Gas & Air Intrusion
Analysis and testing to identify and prevent intrusion of gas or air in piping systems
ISO/IEC 17025:2017

Fauske & Associates fulfills the requirements of ISO/IEC 17025:2017 in the field of Testing

ISO 9001:2015
Fauske & Associates fulfills the requirements of ISO 9001:2015
Dust Hazards Analysis
Evaluate your process to identify combustible dust hazards and perform dust explosion testing
On-Site Risk Management
On-site safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up
DIERS Methodology
Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods
Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safely handle the effluent discharge from an overpressure event

FATE™ & Facility Modeling

FATE (Facility Flow, Aerosol, Thermal, and Explosion) is a flexible, fast-running code developed and maintained by Fauske and Associates under an ASME NQA-1 compliant QA program.

Mechanical, Piping, and Electrical
Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid, flow, and electric power systems
Hydrogen Safety
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Thermal Hydraulics
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Nuclear Safety
Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant
Radioactive Waste
Safety analysis to underpin decomissioning process at facilities which have produced or used radioactive nuclear materials
Adiabatic Safety Calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment and Parts for the DSC/ARC/ARSST/VSP2 Calorimeters

Products and equipment for the process safety or process development laboratory

FERST

Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions

FATE

Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities

Blog

Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.

Resources

With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Recent Posts

Severe Accident (Level II) Uncertainty Analysis

Posted by Fauske & Associates on 07.21.15

Robert W. Reeves, Director, MAAP4 Maintenance, Fauske & Associates, LLC

The study of severe nuclear accidents and the various phenomena (steam explosions, in-vessel retention of the core debris, molten core concrete interactions, hydrogen combustion, etc…) associated with them are far from exact science.  The use “uncertainty analyses” is the process of quantifying the range of possible results from a complex analysis.  This process consists of performing numerous numerical analyses and investigating the impact of varying various inputs over a range of uncertainties to determine a “band” of results.  Uncertainty analysis can be used to reduce the conservatism in an analysis and provide a more realistic calculation.  In addition, many nuclear regulators are now requiring that uncertainty analyses be performed and presented.

The process of performing an uncertainty analysis involves a review of experimental evidence and literature to determine the uncertainty parameters and ranges of uncertain inputs for these parameters. The determination of the uncertain parameters is then followed by a stochastic analysis to propagate the uncertainties through an analytical model in order to calculate the range of outputs. The plot below illustrates an example of the impact of cavity ablation (erosion of the concrete material in the reactor cavity beneath the reactor vessel) depth on the time delay to submerge the core debris in a pool of water.

Molten_Core_-_Concrete_Interaction

Fauske and Associates, LLC (FAI) has a long history of performing uncertainty analysis for phenomena involved in severe nuclear accidents including Hydrogen Combustion, Molten Core-Concrete Interaction, Source Term Calculation, and In-Vessel Retention.  

FAI was the principal author of the original Severe Accident Management (SAM) Technical Basis Report (TBR) (FAI/91-19 Volumes 1 and 2 also known as EPRI TR-101869).  This report provided the technical bases upon which the PWR Owners Groups at the time (Westinghouse (WOG), Combustion Engineering (CEOG), and Babcock & Wilcox (B&WOG)) developed generic severe accident management guidance (SAMG) support material, which served as a framework for each utility’s plant-specific SAMG program.

In the aftermath of the Fukushima accident, EPRI commissioned an update to the original TBR, and FAI again was a principal author in this update.  In addition to the immediate insights from the Fukushima accident, the TBR update also incorporates a significant amount of research and experimental information that post-dated the original TBR and therefore was absent from the technical basis.

For more information, please contact Bob Reeves at reeves.fauske.com or 630-887-5220, www.fauske.com

Subscribe to FAI's "Nuclear Technical Bulletins"

Structural Modal Analysis Technical Bulletin:  "Obtaining Mode Shapes Using the Co-quad  and Global Least Squares Method"

Topics: Nuclear

cta-bg.jpg

Is My Dust Combustible?

A Flowchart To Help You Decide
Download Now